研究業績

論文発表

2022 | 2021 | 20202019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005

2021

  1. Regulation of Oncogenic Targets by Tumor-Suppressive miR-150-3p in Lung Squamous Cell Carcinoma
    Keiko Mizuno, Kengo Tanigawa, Shunsuke Mison, Takayuki Suetsugu, Hiroki Sanada, Akifumi Uchida, Minami Kawano, Kentaro Machida, Shunichi Asai, Shogo Moriya, Hiromasa Inoue, Naohiko Seki.
    Biomedicines . 2021 Dec 11;9(12):1883. doi: 10.3390/biomedicines9121883. https://pubmed.ncbi.nlm.nih.gov/34944699/
  2. <stron
  3. Identification of miR-199-5p and miR-199-3p Target Genes: Paxillin Facilities Cancer Cell Aggressiveness in Head and Neck Squamous Cell Carcinoma
    Nozomi Tanaka, Chikashi Minemura, Shunichi Asai, Naoko Kikkawa, Takashi Kinoshita, Sachi Oshima, Ayaka Koma, Atsushi Kasamatsu, Toyoyuki Hanazawa, Katsuhiro Uzawa, Naohiko Seki.
    Genes (Basel) . 2021 Nov 27;12(12):1910. doi: 10.3390/genes12121910. https://pubmed.ncbi.nlm.nih.gov/34946859/
  4. Molecular Pathogenesis of the Coronin Family: CORO2A Facilitates Migration and Invasion Abilities in Oral Squamous Cell Carcinoma
    Ikuko Kase-Kato, Shunichi Asai, Chikashi Minemura, Kenta Tsuneizumi, Sachi Oshima, Ayaka Koma, Atsushi Kasamatsu, Toyoyuki Hanazawa, Katsuhiro Uzawa, Naohiko Seki.
    Int J Mol Sci . 2021 Nov 24;22(23):12684. doi: 10.3390/ijms222312684. https://pubmed.ncbi.nlm.nih.gov/34884487/
  5. Impact of Oncogenic Targets Controlled by Tumor-Suppressive miR-30a-5p in Pancreatic Ductal Adenocarcinoma
    Pramod Nepal, Yuto Hozaka, Takako Tanaka, Masumi Wada, Shunichi Asai, Chikashi Minemura, Tetsuya Idichi, Takaaki Arigami, Hiroshi Kurahara, Naohiko Seki, Takao Ohtsuka.
    Anticancer Res . 2021 Oct;41(10):4821-4836. doi: 10.21873/anticanres.15297. https://pubmed.ncbi.nlm.nih.gov/34593431/
  6. Impact of Oncogenic Targets by Tumor-Suppressive miR-139-5p and miR-139-3p Regulation in Head and Neck Squamous Cell Carcinoma
    Ayaka Koma, Shunichi Asai, Chikashi Minemura, Sachi Oshima, Takashi Kinoshita, Naoko Kikkawa, Keiichi Koshizuka, Shogo Moriya, Atsushi Kasamatsu, Toyoyuki Hanazawa, Katsuhiro Uzawa, Naohiko Seki.
    Int J Mol Sci . 2021 Sep 14;22(18):9947. doi: 10.3390/ijms22189947. https://pubmed.ncbi.nlm.nih.gov/34576110/
  7. RNA-Sequencing Based microRNA Expression Signature of Colorectal Cancer: The Impact of Oncogenic Targets Regulated by miR-490-3p
    Yuto Hozaka, Yoshiaki Kita, Ryutaro Yasudome, Takako Tanaka, Masumi Wada, Tetsuya Idichi, Kan Tanabe, Shunichi Asai, Shogo Moriya, Hiroko Toda, Shinichiro Mori, Hiroshi Kurahara, Takao Ohtsuka, Naohiko Seki.
    Int J Mol Sci . 2021 Jun 8;22(12):6199. doi: 10.3390/ijms22126199. https://pubmed.ncbi.nlm.nih.gov/34201353/
  8. Identification of Tumor Suppressive Genes Regulated by miR-31-5p and miR-31-3p in Head and Neck Squamous Cell Carcinoma
    Sachi Oshima, Shunichi Asai, Naohiko Seki, Chikashi Minemura, Takashi Kinoshita, Yusuke Goto, Naoko Kikkawa, Shogo Moriya, Atsushi Kasamatsu, Toyoyuki Hanazawa, Katsuhiro Uzawa.
    Int J Mol Sci . 2021 Jun 8;22(12):6199. doi: 10.3390/ijms22126199. https://pubmed.ncbi.nlm.nih.gov/34201353/
  9. Molecular Pathogenesis and Regulation of the miR-29-3p-Family: Involvement of ITGA6 and ITGB1 in Intra-Hepatic Cholangiocarcinoma
    Yuto Hozaka, Naohiko Seki, Takako Tanaka, Shunichi Asai, Shogo Moriya, Tetsuya Idichi, Masumi Wada, Kiyonori Tanoue, Yota Kawasaki, Yuko Mataki, Hiroshi Kurahara, Takao Ohtsuka.
    Cancers (Basel) . 2021 Jun 4;13(11):2804. doi: 10.3390/cancers13112804. https://pubmed.ncbi.nlm.nih.gov/34199886/
  10. Molecular pathogenesis of breast cancer: impact of miR-99a-5p and miR-99a-3p regulation on oncogenic genes
    Yoshiaki Shinden, Tadahiro Hirashima, Nijiro Nohata, Hiroko Toda, Reona Okada, Shunichi Asai, Takako Tanaka, Yuto Hozaka, Takao Ohtsuka, Yuko Kijima, Naohiko Seki.
    J Hum Genet. 2021 May;66(5):519-534. doi: 10.1038/s10038-020-00865-y. https://pubmed.ncbi.nlm.nih.gov/33177704/
  11. Isoform-specific and signaling-dependent propagation of acute myeloid leukemia by Wilms tumor 1
    Sandeep Potluri, Salam A Assi, Paulynn S Chin, Dan J L Coleman, Anna Pickin, Shogo Moriya, Naohiko Seki, Olaf Heidenreich, Peter N Cockerill, Constanze Bonifer.
    Cell Rep. 2021 Apr 20;35(3):109010. doi: 10.1016/j.celrep.2021.109010. https://pubmed.ncbi.nlm.nih.gov/33882316/
  12. Molecular Signature of Small Cell Lung Cancer after Treatment Failure: The MCM Complex as Therapeutic Target
    Shunsuke Misono, Keiko Mizuno, Takayuki Suetsugu, Kengo Tanigawa, Nijiro Nohata, Akifumi Uchida, Hiroki Sanada, Reona Okada, Shogo Moriya, Hiromasa Inoue, Naohiko Seki.
    Cancers (Basel). 2021 Mar 10;13(6):1187. doi: 10.3390/cancers13061187. https://pubmed.ncbi.nlm.nih.gov/33801812/

2020

  1. Regulation of Oncogenic Targets by the Tumor-Suppressive miR-139 Duplex ( miR-139-5p and miR-139-3p) in Renal Cell Carcinoma
    Reona Okada, Yusuke Goto, Yasutaka Yamada, Mayuko Kato, Shunichi Asai, Shogo Moriya, Tomohiko Ichikawa, Naohiko Seki.
    Biomedicines. 2020 Dec 12;8(12):599. doi: 10.3390/biomedicines8120599. https://pubmed.ncbi.nlm.nih.gov/33322675/
  2. RNA sequencing-based microRNA expression signature in esophageal squamous cell carcinoma: oncogenic targets by antitumor miR-143-5p and miR-143-3p regulation
    Masumi Wada, Yusuke Goto, Takako Tanaka, Reona Okada, Shogo Moriya, Tetsuya Idichi, Masahiro Noda, Ken Sasaki, Yoshiaki Kita, Hiroshi Kurahara, Kosei Maemura, Shoji Natsugoe, Naohiko Seki.
    J Hum Genet. 2020 Nov;65(11):1019-1034. doi: 10.1038/s10038-020-0795-x. https://pubmed.ncbi.nlm.nih.gov/32623445/
  3. Molecular Pathogenesis of Pancreatic Ductal Adenocarcinoma: Impact of miR-30c-5p and miR-30c-2-3p Regulation on Oncogenic Genes
    Takako Tanaka, Reona Okada, Yuto Hozaka, Masumi Wada, Shogo Moriya, Souichi Satake, Tetsuya Idichi, Hiroshi Kurahara, Takao Ohtsuka, Naohiko Seki.
    Cancers (Basel). 2020 Sep 23;12(10):2731. doi: 10.3390/cancers12102731. https://pubmed.ncbi.nlm.nih.gov/32977589/
  4. FAM64A: A Novel Oncogenic Target of Lung Adenocarcinoma Regulated by Both Strands of miR-99a (miR-99a-5p and miR-99a-3p)
    Keiko Mizuno, Kengo Tanigawa, Nijiro Nohata, Shunsuke Misono, Reona Okada, Shunichi Asai, Shogo Moriya, Takayuki Suetsugu, Hiromasa Inoue, Naohiko Seki.
    Cells. 2020 Sep 11;9(9):2083. doi: 10.3390/cells9092083. https://pubmed.ncbi.nlm.nih.gov/32932948/
  5. Role of miR-30a-3p Regulation of Oncogenic Targets in Pancreatic Ductal Adenocarcinoma Pathogenesis
    Hiroki Shimomura, Reona Okada, Takako Tanaka, Yuto Hozaka, Masumi Wada, Shogo Moriya, Tetsuya Idichi, Yoshiaki Kita, Hiroshi Kurahara, Takao Ohtsuka, Naohiko Seki.
    Int J Mol Sci. 2020 Sep 4;21(18):6459. doi: 10.3390/ijms21186459. https://pubmed.ncbi.nlm.nih.gov/32899691/
  6. Regulation of aberrantly expressed SERPINH1 by antitumor miR-148a-5p inhibits cancer cell aggressiveness in gastric cancer
    Kosuke Kawagoe, Masumi Wada, Tetsuya Idichi, Reona Okada, Yasutaka Yamada, Shogo Moriya, Keishi Okubo, Daisuke Matsushita, Takaaki Arigami, Hiroshi Kurahara, Kosei Maemura, Shoji Natsugoe, Naohiko Seki.
    J Hum Genet. 2020 Aug;65(8):647-656. doi: 10.1038/s10038-020-0746-6. https://pubmed.ncbi.nlm.nih.gov/32235846/
  7. Replisome genes regulation by antitumor miR-101-5p in clear cell renal cell carcinoma
    Yasutaka Yamada, Nijiro Nohata, Akifumi Uchida, Mayuko Kato, Takayuki Arai, Shogo Moriya, Keiko Mizuno, Satoko Kojima, Kazuto Yamazaki, Yukio Naya, Tomohiko Ichikawa, Naohiko Seki.
    Cancer Sci. 2020 Apr;111(4):1392-1406. doi: 10.1111/cas.14327. https://pubmed.ncbi.nlm.nih.gov/31975570/
  8. RNA-sequence-based microRNA expression signature in breast cancer: tumor-suppressive miR-101-5p regulates molecular pathogenesis
    Hiroko Toda, Naohiko Seki, Sasagu Kurozumi, Yoshiaki Shinden, Yasutaka Yamada, Nijiro Nohata, Shogo Moriya, Tetsuya Idichi, Kosei Maemura, Takaaki Fujii, Jun Horiguchi, Yuko Kijima, Shoji Natsugoe.
    Mol Oncol. 2020 Feb;14(2):426-446. doi: 10.1002/1878-0261.12602. https://pubmed.ncbi.nlm.nih.gov/31755218/

2019

  1. Regulation of Oncogenic Targets by miR-99a-3p (Passenger Strand of miR-99a- Duplex) in Head and Neck Squamous Cell Carcinoma
    Reona Okada, Keiichi Koshizuka, Yasutaka Yamada, Shogo Moriya, Naoko Kikkawa, Takashi Kinoshita, Toyoyuki Hanazawa, Naohiko Seki.
    Cells . 2019 Nov 28;8(12):1535. doi: 10.3390/cells8121535. https://pubmed.ncbi.nlm.nih.gov/31795200/
  2. Involvement of Dual Strands of miR-143 (miR-143-5p and miR-143-3p) and Their Target Oncogenes in the Molecular Pathogenesis of Lung Adenocarcinoma.
    Sanada H, Seki N, Mizuno K, Misono S, Uchida A, Yamada Y, Moriya S, Kikkawa N, Machida K, Kumamoto T, Suetsugu T, Inoue H.
    Int J Mol Sci. 2019 Sep 11;20(18). pii: E4482. doi: 10.3390/ijms20184482. https://www.ncbi.nlm.nih.gov/pubmed/31514295
  3. Aberrantly expressed PLOD1 promotes cancer aggressiveness in bladder cancer: a potential prognostic marker and therapeutic target.
    Yamada Y, Kato M, Arai T, Sanada H, Uchida A, Misono S, Sakamoto S, Komiya A, Ichikawa T, Seki N.
    Mol Oncol. 2019 Sep;13(9):1898-1912. doi: 10.1002/1878-0261.12532. Epub 2019 Jun 27. https://www.ncbi.nlm.nih.gov/pubmed/31199049
  4. Gene regulation by antitumor miR-130b-5p in pancreatic ductal adenocarcinoma: the clinical significance of oncogenic EPS8.
    Fukuhisa H, Seki N, Idichi T, Kurahara H, Yamada Y, Toda H, Kita Y, Kawasaki Y, Tanoue K, Mataki Y, Maemura K, Natsugoe S.
    J Hum Genet. 2019 Jun;64(6):521-534. doi: 10.1038/s10038-019-0584-6. Epub 2019 Mar 11. https://www.ncbi.nlm.nih.gov/pubmed/30858505
  5. Molecular Pathogenesis of Gene Regulation by the miR-150 Duplex: miR-150-3p Regulates TNS4 in Lung Adenocarcinoma.
    Misono S, Seki N, Mizuno K, Yamada Y, Uchida A, Sanada H, Moriya S, Kikkawa N, Kumamoto T, Suetsugu T, Inoue H.
    Cancers (Basel). 2019 Apr 30;11(5). pii: E601. doi: 10.3390/cancers11050601. https://www.ncbi.nlm.nih.gov/pubmed/31052206
  6. Micro-ribonucleic acid expression signature of metastatic castration-resistant prostate cancer: Regulation of NCAPH by antitumor miR-199a/b-3p.
    Arai T, Kojima S, Yamada Y, Sugawara S, Kato M, Yamazaki K, Naya Y, Ichikawa T, Seki N.
    Int J Urol. 2019 Apr;26(4):506-520. doi: 10.1111/iju.13911. Epub 2019 Feb 28. https://www.ncbi.nlm.nih.gov/pubmed/30818424
  7. Gene Regulation by Antitumor miR-204-5p in Pancreatic Ductal Adenocarcinoma: The Clinical Significance of Direct RACGAP1 Regulation
    Muhammad Khalid, Tetsuya Idichi, Naohiko Seki, Masumi Wada, Yasutaka Yamada, Haruhi Fukuhisa, Hiroko Toda, Yoshiaki Kita, Yota Kawasaki, Kiyonori Tanoue, Hiroshi Kurahara, Yuko Mataki, Kosei Maemura, Shoji Natsugoe.
    Cancers. 2019 Mar 7;11(3):327. doi: 10.3390/cancers11030327. https://pubmed.ncbi.nlm.nih.gov/30866526/
  8. Regulation of KIF2A by Antitumor miR-451a Inhibits Cancer Cell Aggressiveness Features in Lung Squamous Cell Carcinoma.
    Uchida A, Seki N, Mizuno K, Yamada Y, Misono S, Sanada H, Kikkawa N, Kumamoto T, Suetsugu T, Inoue H.
    Cancers (Basel). 2019 Feb 22;11(2). pii: E258. doi: 10.3390/cancers11020258. https://www.ncbi.nlm.nih.gov/pubmed/30813343
  9. Role of pre-miR-532 (miR-532-5p and miR-532-3p) in regulation of gene expression and molecular pathogenesis in renal cell carcinoma.
    Yamada Y, Arai T, Kato M, Kojima S, Sakamoto S, Komiya A, Naya Y, Ichikawa T, Seki N.
    Am J Clin Exp Urol. 2019 Feb 18;7(1):11-30. eCollection 2019. https://www.ncbi.nlm.nih.gov/pubmed/30906802
  10. Molecular pathogenesis of esophageal squamous cell carcinoma: Identification of the antitumor effects of miR‑145‑3p on gene regulation.
    Shimonosono M, Idichi T, Seki N, Yamada Y, Arai T, Arigami T, Sasaki K, Omoto I, Uchikado Y, Kita Y, Kurahara H, Maemura K, Natsugoe S.
    Int J Oncol. 2019 Feb;54(2):673-688. doi: 10.3892/ijo.2018.4657. Epub 2018 Dec 6. https://www.ncbi.nlm.nih.gov/pubmed/30535463
  11. Pirin: a potential novel therapeutic target for castration-resistant prostate cancer regulated by miR-455-5p.
    Arai T, Kojima S, Yamada Y, Sugawara S, Kato M, Yamazaki K, Naya Y, Ichikawa T, Seki N.
    Mol Oncol. 2019 Feb;13(2):322-337. doi: 10.1002/1878-0261.12405. Epub 2018 Dec 21. https://www.ncbi.nlm.nih.gov/pubmed/30444038
  12. Involvement of dual-strand of the miR-144 duplex and their targets in the pathogenesis of lung squamous cell carcinoma.
    Uchida A, Seki N, Mizuno K, Misono S, Yamada Y, Kikkawa N, Sanada H, Kumamoto T, Suetsugu T, Inoue H.
    Cancer Sci. 2019 Jan;110(1):420-432. doi: 10.1111/cas.13853. Epub 2018 Dec 6. https://www.ncbi.nlm.nih.gov/pubmed/30375717

2018

  1. Molecular pathogenesis of triple-negative breast cancer based on microRNA expression signatures: antitumor miR-204-5p targets AP1S3.
    Toda H, Kurozumi S, Kijima Y, Idichi T, Shinden Y, Yamada Y, Arai T, Maemura K, Fujii T, Horiguchi J, Natsugoe S, Seki N.
    J Hum Genet. 2018 Dec;63(12):1197-1210. doi: 10.1038/s10038-018-0510-3. Epub 2018 Sep 18. https://www.ncbi.nlm.nih.gov/pubmed/30228364
  2. Molecular pathogenesis of renal cell carcinoma: Impact of the anti-tumor miR-29 family on gene regulation.
    Yamada Y, Sugawara S, Arai T, Kojima S, Kato M, Okato A, Yamazaki K, Naya Y, Ichikawa T, Seki N.
    Int J Urol. 2018 Nov;25(11):953-965. doi: 10.1111/iju.13783. Epub 2018 Aug 28. https://www.ncbi.nlm.nih.gov/pubmed/30153702
  3. Dual strands of the miR-145 duplex (miR-145-5p and miR-145-3p) regulate oncogenes in lung adenocarcinoma pathogenesis.
    Misono S, Seki N, Mizuno K, Yamada Y, Uchida A, Arai T, Kumamoto T, Sanada H, Suetsugu T, Inoue H.
    J Hum Genet. 2018 Oct;63(10):1015-1028. doi: 10.1038/s10038-018-0497-9. Epub 2018 Aug 6. https://www.ncbi.nlm.nih.gov/pubmed/30082847
  4. Involvement of anti-tumor miR-124-3p and its targets in the pathogenesis of pancreatic ductal adenocarcinoma: direct regulation of ITGA3 and ITGB1 by miR-124-3p.
    Idichi T, Seki N, Kurahara H, Fukuhisa H, Toda H, Shimonosono M, Yamada Y, Arai T, Kita Y, Kijima Y, Mataki Y, Maemura K, Natsugoe S.
    Oncotarget. 2018 Jun 22;9(48):28849-28865. doi: 10.18632/oncotarget.25599. eCollection 2018 Jun 22. https://www.ncbi.nlm.nih.gov/pubmed/29988949
  5. Regulation of antitumor miR-144-5p targets oncogenes: Direct regulation of syndecan-3 and its clinical significance.
    Yamada Y, Arai T, Kojima S, Sugawara S, Kato M, Okato A, Yamazaki K, Naya Y, Ichikawa T, Seki N.
    Cancer Sci. 2018 Sep;109(9):2919-2936. doi: 10.1111/cas.13722. Epub 2018 Jul 28. https://www.ncbi.nlm.nih.gov/pubmed/29968393
  6. Anti-tumor roles of both strands of the miR-455 duplex: their targets SKA1 and SKA3 are involved in the pathogenesis of renal cell carcinoma.
    Yamada Y, Arai T, Kojima S, Sugawara S, Kato M, Okato A, Yamazaki K, Naya Y, Ichikawa T, Seki N.
    Oncotarget. 2018 Jun 1;9(42):26638-26658. doi: 10.18632/oncotarget.25410. eCollection 2018 Jun 1. https://www.ncbi.nlm.nih.gov/pubmed/29928475
  7. Molecular pathogenesis of pancreatic ductal adenocarcinoma: Impact of passenger strand of pre-miR-148a on gene regulation.
    Idichi T, Seki N, Kurahara H, Fukuhisa H, Toda H, Shimonosono M, Okato A, Arai T, Kita Y, Mataki Y, Kijima Y, Maemura K, Natsugoe S.
    Cancer Sci. 2018 Jun;109(6):2013-2026. doi: 10.1111/cas.13610. Epub 2018 May 22. https://www.ncbi.nlm.nih.gov/pubmed/29660218
  8. Regulation of NCAPG by miR-99a-3p (passenger strand) inhibits cancer cell aggressiveness and is involved in CRPC.
    Arai T, Okato A, Yamada Y, Sugawara S, Kurozumi A, Kojima S, Yamazaki K, Naya Y, Ichikawa T, Seki N.
    Cancer Med. 2018 May;7(5):1988-2002. doi: 10.1002/cam4.1455. Epub 2018 Apr 2. https://www.ncbi.nlm.nih.gov/pubmed/29608247
  9. Dual strands of the miR-223 duplex (miR-223-5p and miR-223-3p) inhibit cancer cell aggressiveness: targeted genes are involved in bladder cancer pathogenesis.
    Sugawara S, Yamada Y, Arai T, Okato A, Idichi T, Kato M, Koshizuka K, Ichikawa T, Seki N.
    J Hum Genet. 2018 May;63(5):657-668. doi: 10.1038/s10038-018-0437-8. Epub 2018 Mar 14.https://www.ncbi.nlm.nih.gov/pubmed/29540855
  10. Molecular pathogenesis of interstitial cystitis based on microRNA expression signature: miR-320 family-regulated molecular pathways and targets.
    Arai T, Fuse M, Goto Y, Kaga K, Kurozumi A, Yamada Y, Sugawara S, Okato A, Ichikawa T, Yamanishi T, Seki N.
    J Hum Genet. 2018 May;63(5):543-554. doi: 10.1038/s10038-018-0419-x. Epub 2018 Mar 12. https://www.ncbi.nlm.nih.gov/pubmed/29531336
  11. Inhibition of integrin β1-mediated oncogenic signalling by the antitumor microRNA-29 family in head and neck squamous cell carcinoma.
    Koshizuka K, Kikkawa N, Hanazawa T, Yamada Y, Okato A, Arai T, Katada K, Okamoto Y, Seki N.
    Oncotarget. 2017 Dec 11;9(3):3663-3676. doi: 10.18632/oncotarget.23194. eCollection 2018 Jan 9. https://www.ncbi.nlm.nih.gov/pubmed/29423074
  12. Impact of novel oncogenic pathways regulated by antitumor miR-451a in renal cell carcinoma.
    Yamada Y, Arai T, Sugawara S, Okato A, Kato M, Kojima S, Yamazaki K, Naya Y, Ichikawa T, Seki N.
    Cancer Sci. 2018 Apr;109(4):1239-1253. doi: 10.1111/cas.13526. Epub 2018 Mar 9. https://www.ncbi.nlm.nih.gov/pubmed/29417701
  13. Downregulation of matrix metalloproteinase 14 by the antitumor miRNA, miR-150-5p, inhibits the aggressiveness of lung squamous cell carcinoma cells.
    Suetsugu T, Koshizuka K, Seki N, Mizuno K, Okato A, Arai T, Misono S, Uchida A, Kumamoto T, Inoue H.
    Int J Oncol. 2018 Mar;52(3):913-924. doi: 10.3892/ijo.2017.4232. Epub 2017 Dec 21. https://www.ncbi.nlm.nih.gov/pubmed/29286099
  14. Antitumor miR-150-5p and miR-150-3p inhibit cancer cell aggressiveness by targeting SPOCK1 in head and neck squamous cell carcinoma.
    Koshizuka K, Hanazawa T, Kikkawa N, Katada K, Okato A, Arai T, Idichi T, Osako Y, Okamoto Y, Seki N.
    Auris Nasus Larynx. 2018 Aug;45(4):854-865. doi: 10.1016/j.anl.2017.11.019. Epub 2017 Dec 9. https://www.ncbi.nlm.nih.gov/pubmed/29115582
  15. Regulation of HMGB3 by antitumor miR-205-5p inhibits cancer cell aggressiveness and is involved in prostate cancer pathogenesis.
    Yamada Y, Nishikawa R, Kato M, Okato A, Arai T, Kojima S, Yamazaki K, Naya Y, Ichikawa T, Seki N.
    J Hum Genet. 2018 Feb;63(2):195-205. doi: 10.1038/s10038-017-0371-1. Epub 2017 Dec 1. https://www.ncbi.nlm.nih.gov/pubmed/29196733
  16. Passenger strand of miR-145-3p acts as a tumor-suppressor by targeting MYO1B in head and neck squamous cell carcinoma.
    Yamada Y, Koshizuka K, Hanazawa T, Kikkawa N, Okato A, Idichi T, Arai T, Sugawara S, Katada K, Okamoto Y, Seki N.
    Int J Oncol. 2018 Jan;52(1):166-178. doi: 10.3892/ijo.2017.4190. Epub 2017 Nov 6.https://www.ncbi.nlm.nih.gov/pubmed/29115582

2017

  1. The microRNA expression signature of pancreatic ductal adenocarcinoma by RNA sequencing: anti-tumour functions of the microRNA-216 cluster.
    Yonemori K, Seki N, Idichi T, Kurahara H, Osako Y, Koshizuka K, Arai T, Okato A, Kita Y, Arigami T, Mataki Y, Kijima Y, Maemura K, Natsugoe S.
    Oncotarget. 2017 Jul 26;8(41):70097-70115. doi: 10.18632/oncotarget.19591. eCollection 2017 Sep 19.http://www.ncbi.nlm.nih.gov/pubmed/29050264
  2. Dual Strands of Pre-miR-149 Inhibit Cancer Cell Migration and Invasion through Targeting FOXM1 in Renal Cell Carcinoma.
    Okato A, Arai T, Yamada Y, Sugawara S, Koshizuka K, Fujimura L, Kurozumi A, Kato M, Kojima S, Naya Y, Ichikawa T, Seki N.
    Int J Mol Sci. 2017 Sep 13;18(9). pii: E1969. doi: 10.3390/ijms18091969. http://www.ncbi.nlm.nih.gov/pubmed/28902136
  3. Regulation of actin-binding protein ANLN by antitumor miR-217 inhibits cancer cell aggressiveness in pancreatic ductal adenocarcinoma.
    Idichi T, Seki N, Kurahara H, Yonemori K, Osako Y, Arai T, Okato A, Kita Y, Arigami T, Mataki Y, Kijima Y, Maemura K, Natsugoe S.
    Oncotarget. 2017 May 29;8(32):53180-53193. doi: 10.18632/oncotarget.18261. eCollection 2017 Aug 8. http://www.ncbi.nlm.nih.gov/pubmed/28881803
  4. Involvement of aberrantly expressed microRNAs in the pathogenesis of head and neck squamous cell carcinoma.
    Koshizuka K, Hanazawa T, Arai T, Okato A, Kikkawa N, Seki N.
    Cancer Metastasis Rev. 2017 Aug 23. doi: 10.1007/s10555-017-9692-y. [Epub ahead of print] http://www.ncbi.nlm.nih.gov/pubmed/28836104
  5. Regulation of spindle and kinetochore-associated protein 1 by antitumor miR-10a-5p in renal cell carcinoma.
    Arai T, Okato A, Kojima S, Idichi T, Koshizuka K, Kurozumi A, Kato M, Yamazaki K, Ishida Y, Naya Y, Ichikawa T, Seki N.
    Cancer Sci. 2017 Jul 26. doi: 10.1111/cas.13331. [Epub ahead of print] http://www.ncbi.nlm.nih.gov/pubmed/28746769
  6. Regulation of SPOCK1 by dual strands of pre-miR-150 inhibit cancer cell migration and invasion in esophageal squamous cell carcinoma.
    Osako Y, Seki N, Koshizuka K, Okato A, Idichi T, Arai T, Omoto I, Sasaki K, Uchikado Y, Kita Y, Kurahara H, Maemura K, Natsugoe S.
    J Hum Genet. 2017 Jun 29. doi: 10.1038/jhg.2017.69. [Epub ahead of print] http://www.ncbi.nlm.nih.gov/pubmed/28659612
  7. Impact of novel miR-145-3p regulatory networks on survival in patients with castration-resistant prostate cancer.
    Goto Y, Kurozumi A, Arai T, Nohata N, Kojima S, Okato A, Kato M, Yamazaki K, Ishida Y, Naya Y, Ichikawa T, Seki N.
    Br J Cancer. 2017 Jul 25;117(3):409-420. doi: 10.1038/bjc.2017.191. Epub 2017 Jun 22. http://www.ncbi.nlm.nih.gov/pubmed/28641312
  8. Regulation of ITGA3 by the anti-tumor miR-199 family inhibits cancer cell migration and invasion in head and neck cancer.
    Koshizuka K, Hanazawa T, Kikkawa N, Arai T, Okato A, Kurozumi A, Kato M, Katada K, Okamoto Y, Seki N.
    Cancer Sci. 2017 Aug;108(8):1681-1692. doi: 10.1111/cas.13298. Epub 2017 Jul 4. http://www.ncbi.nlm.nih.gov/pubmed/28612520
  9. Dual strands of pre-miR‑150 (miR‑150‑5p and miR‑150‑3p) act as antitumor miRNAs targeting SPOCK1 in naïve and castration-resistant prostate cancer.
    Okato A, Arai T, Kojima S, Koshizuka K, Osako Y, Idichi T, Kurozumi A, Goto Y, Kato M, Naya Y, Ichikawa T, Seki N.
    Int J Oncol. 2017 Jul;51(1):245-256. doi: 10.3892/ijo.2017.4008. Epub 2017 May 17. http://www.ncbi.nlm.nih.gov/pubmed/28534948
  10. Deep sequencing-based microRNA expression signatures in head and neck squamous cell carcinoma: dual strands of pre-miR-150 as antitumor miRNAs.
    Koshizuka K, Nohata N, Hanazawa T, Kikkawa N, Arai T, Okato A, Fukumoto I, Katada K, Okamoto Y, Seki N.
    Oncotarget. 2017 May 2;8(18):30288-30304. doi: 10.18632/oncotarget.16327. http://www.ncbi.nlm.nih.gov/pubmed/28415821
  11. The microRNA expression signature of small cell lung cancer: tumor suppressors of miR-27a-5p and miR-34b-3p and their targeted oncogenes.
    Mizuno K, Mataki H, Arai T, Okato A, Kamikawaji K, Kumamoto T, Hiraki T, Hatanaka K, Inoue H, Seki N.
    J Hum Genet. 2017 Jul;62(7):671-678. doi: 10.1038/jhg.2017.27. Epub 2017 Mar 9. http://www.ncbi.nlm.nih.gov/pubmed/28275243
  12. Noncoding RNAs: a new fine-tuner is a key player of human pathogenesis.
    Seki N, Hata A.
    J Hum Genet. 2017 Jan;62(1):1. doi: 10.1038/jhg.2016.140. No abstract available. http://www.ncbi.nlm.nih.gov/pubmed/28053343
  13. ZFP36L2 promotes cancer cell aggressiveness and is regulated by antitumor microRNA-375 in pancreatic ductal adenocarcinoma.
    Yonemori K, Seki N, Kurahara H, Osako Y, Idichi T, Arai T, Koshizuka K, Kita Y, Maemura K, Natsugoe S.
    Cancer Sci. 2017 Jan;108(1):124-135. doi: 10.1111/cas.13119. http://www.ncbi.nlm.nih.gov/pubmed/27862697

2016

  1. Regulation of MMP13 by antitumor microRNA-375 markedly inhibits cancer cell migration and invasion in esophageal squamous cell carcinoma.
    Osako Y, Seki N, Kita Y, Yonemori K, Koshizuka K, Kurozumi A, Omoto I, Sasaki K, Uchikado Y, Kurahara H, Maemura K, Natsugoe S.
    Int J Oncol. 2016 Oct 21. doi: 10.3892/ijo.2016.3745. Epub 2016 Oct 21. http://www.ncbi.nlm.nih.gov/pubmed/27779648
  2. Dual-strand tumor-suppressor microRNA-145 (miR-145-5p and miR-145-3p) coordinately targeted MTDH in lung squamous cell carcinoma.
    Mataki H, Seki N, Mizuno K, Nohata N, Kamikawaji K, Kumamoto T, Koshizuka K, Goto Y, Inoue H.
    Oncotarget. 2016 Nov 1;7(44):72084-72098. doi: 10.18632/oncotarget.12290. http://www.ncbi.nlm.nih.gov/pubmed/27765924
  3. Regulation of TPD52 by antitumor microRNA-218 suppresses cancer cell migration and invasion in lung squamous cell carcinoma.
    Kumamoto T, Seki N, Mataki H, Mizuno K, Kamikawaji K, Samukawa T, Koshizuka K, Goto Y, Inoue H.
    Int J Oncol. 2016 Sep 13. doi: 10.3892/ijo.2016.3690. http://www.ncbi.nlm.nih.gov/pubmed/27633630
  4. The tumor-suppressive microRNA-23b/27b cluster regulates the MET oncogene in oral squamous cell carcinoma.
    Fukumoto I, Koshizuka K, Hanazawa T, Kikkawa N, Matsushita R, Kurozumi A, Kato M, Okato A, Okamoto Y, Seki N.
    Int J Oncol. 2016 Sep;49(3):1119-29. http://www.ncbi.nlm.nih.gov/pubmed/27573718
  5. The microRNA signatures: aberrantly expressed microRNAs in head and neck squamous cell carcinoma.
    Koshizuka K, Hanazawa T, Fukumoto I, Kikkawa N, Okamoto Y, Seki N.
    J Hum Genet. 2016 Aug 25. doi: 10.1038/jhg.2016.105. http://www.ncbi.nlm.nih.gov/pubmed/27557665
  6. The microRNA signature of patients with sunitinib failure: regulation of UHRF1 pathways by microRNA-101 in renal cell carcinoma.
    Goto Y, Kurozumi A, Nohata N, Kojima S, Matsushita R, Yoshino H, Yamazaki K, Ishida Y, Ichikawa T, Naya Y, Seki N.
    Oncotarget. 2016 Jul 28. http://www.ncbi.nlm.nih.gov/pubmed/27487138
  7. Dual tumor-suppressors miR-139-5p and miR-139-3p targeting matrix metalloprotease 11 (MMP11) in bladder cancer.
    Yonemori M, Seki N, Yoshino H, Matsushita R, Miyamoto K, Nakagawa M, Enokida H.
    Cancer Sci. 2016 Jun 29 http://www.ncbi.nlm.nih.gov/pubmed/27355528
  8. MicroRNAs in non-small cell lung cancer and idiopathic pulmonary fibrosis.
    Mizuno K, Mataki H, Seki N, Kumamoto T, Kamikawaji K, Inoue H.
    J Hum Genet. 2016 Aug 4 http://www.ncbi.nlm.nih.gov/pubmed/27488441
  9. Aberrantly expressed microRNAs in bladder cancer and renal cell carcinoma.
    Kurozumi A, Goto Y, Okato A, Ichikawa T, Seki N.
    J Hum Genet. 2016 Jun 30 http://www.ncbi.nlm.nih.gov/pubmed/27357429
  10. Regulation of LOXL2 and SERPINH1 by antitumor microRNA-29a in lung cancer with idiopathic pulmonary fibrosis.
    Kamikawaji K, Seki N, Watanabe M, Mataki H, Kumamoto T, Takagi K, Mizuno K, Inoue H.
    J Hum Genet. 2016 Aug 4 http://www.ncbi.nlm.nih.gov/pubmed/27488440
  11. Tumor-suppressive microRNA-223 inhibits cancer cell migration and invasion by targeting ITGA3/ITGB1 signaling in prostate cancer.
    Kurozumi A, Goto Y, Matsushita R, Fukumoto I, Kato M, Nishikawa R, Sakamoto S, Enokida H, Nakagawa M, Ichikawa T, Seki N.
    Cancer Sci. 2016;107(1):84-94. http://www.ncbi.nlm.nih.gov/pubmed/26509963
  12. Direct regulation of LAMP1 by tumor-suppressive microRNA-320a in prostate cancer.
    Okato A, Goto Y, Kurozumi A, Kato M, Kojima S, Matsushita R, Yonemori M, Miyamoto K, Ichikawa T, Seki N.
    Int J Oncol. 2016;49(1):111-22. http://www.ncbi.nlm.nih.gov/pubmed/27212625
  13. Dual-receptor (EGFR and c-MET) inhibition by tumor-suppressive miR-1 and miR-206 in head and neck squamous cell carcinoma.
    Koshizuka K, Hanazawa T, Fukumoto I, Kikkawa N, Matsushita R, Mataki H, Mizuno K, Okamoto Y, Seki N.
    J Hum Genet. 2016 May 12. doi: 10.1038/jhg.2016.47. http://www.ncbi.nlm.nih.gov/pubmed/27169691
  14. Regulation of UHRF1 by dual-strand tumor-suppressor microRNA-145 (miR-145-5p and miR-145-3p): Inhibition of bladder cancer cell aggressiveness.
    Matsushita R, Yoshino H, Enokida H, Goto Y, Miyamoto K, Yonemori M, Inoguchi S, Nakagawa M, Seki N.
    Oncotarget. 2016 Apr 9. doi: 10.18632/oncotarget.8668. http://www.ncbi.nlm.nih.gov/pubmed/27072587
  15. Regulation of E3 ubiquitin ligase-1 (WWP1) by microRNA-452 inhibits cancer cell migration and invasion in prostate cancer.
    Goto Y, Kojima S, Kurozumi A, Kato M, Okato A, Matsushita R, Ichikawa T, Seki N.
    Br J Cancer. 2016;114(10):1135-44 http://www.ncbi.nlm.nih.gov/pubmed/27070713
  16. Regulation of the collagen cross-linking enzymes LOXL2 and PLOD2 by tumor-suppressive microRNA-26a/b in renal cell carcinoma.
    Kurozumi A, Kato M, Goto Y, Matsushita R, Nishikawa R, Okato A, Fukumoto I, Ichikawa T, Seki N.
    Int J Oncol. 2016;48(5):1837-46. http://www.ncbi.nlm.nih.gov/pubmed/26983694
  17. Tumor-suppressive microRNA-29 family inhibits cancer cell migration and invasion directly targeting LOXL2 in lung squamous cell carcinoma.
    Mizuno K, Seki N, Mataki H, Matsushita R, Kamikawaji K, Kumamoto T, Takagi K, Goto Y, Nishikawa R, Kato M, Enokida H, Nakagawa M, Inoue H.
    Int J Oncol. 2016;48(2):450-60. http://www.ncbi.nlm.nih.gov/pubmed/26676674
  18. Tumor-suppressive microRNAs (miR-26a/b, miR-29a/b/c and miR-218) concertedly suppressed metastasis-promoting LOXL2 in head and neck squamous cell carcinoma.
    Fukumoto I, Kikkawa N, Matsushita R, Kato M, Kurozumi A, Nishikawa R, Goto Y, Koshizuka K, Hanazawa T, Enokida H, Nakagawa M, Okamoto Y, Seki N.
    J Hum Genet. 2016;61(2):109-18. http://www.ncbi.nlm.nih.gov/pubmed/26490187
  19. Tumour-suppressive miRNA-26a-5p and miR-26b-5p inhibit cell aggressiveness by regulating PLOD2 in bladder cancer.
    Miyamoto K, Seki N, Matsushita R, Yonemori M, Yoshino H, Nakagawa M, Enokida H.
    Br J Cancer. 2016. Jun 16. doi: 10.1038/bjc.2016.179. http://www.ncbi.nlm.nih.gov/pubmed/27310702
  20. Regulation of metastasis-promoting LOXL2 gene expression by antitumor microRNAs in prostate cancer.
    Kato M, Kurozumi A, Goto Y, Matsushita R, Okato A, Nishikawa R, Fukumoto I, Koshizuka K, Ichikawa T, Seki N.
    J Hum Genet. 2016 Jun 9. doi: 10.1038/jhg.2016.68. http://www.ncbi.nlm.nih.gov/pubmed/27278788
  21. Real Time Metastatic Route Tracking of Orthotopic PC-3-GFP Human Prostate Cancer Using Intravital Imaging.
    Zhang Y, Wang X, Hoffman RM, Seki N.
    J Cell Biochem. 2016;117(4):1027-32. http://www.ncbi.nlm.nih.gov/pubmed/26515240
  22. The roles of microRNAs in the progression of castration-resistant prostate cancer.
    Kojima S, Goto Y, Naya Y.
    J Hum Genet. 2016 June 9. doi: 10.1038/jhg.2016.69 http://www.ncbi.nlm.nih.gov/pubmed/27278789

2015

  1. Functional significance of aberrantly expressed microRNAs in prostate cancer.
    Goto Y, Kurozumi A, Enokida H, Ichikawa T, Seki N.
    Int J Urol. 2015;22(3):242-52. http://www.ncbi.nlm.nih.gov/pubmed/25599923
  2. MicroRNA expression signature of castration-resistant prostate cancer: the microRNA-221/222 cluster functions as a tumour suppressor and disease progression marker.
    Goto Y, Kojima S, Nishikawa R, Kurozumi A, Kato M, Enokida H, Matsushita R, Yamazaki K, Ishida Y, Nakagawa M, Naya Y, Ichikawa T, Seki N.
    Br J Cancer. 2015;113(7):1055-65. http://www.ncbi.nlm.nih.gov/pubmed/26325107
  3. Tumour-suppressive microRNA-29s directly regulate LOXL2 expression and inhibit cancer cell migration and invasion in renal cell carcinoma.
    Nishikawa R, Chiyomaru T, Enokida H, Inoguchi S, Ishihara T, Matsushita R, Goto Y, Fukumoto I, Nakagawa M, Seki N.
    FEBS Lett. 2015;589(16):2136-45. http://www.ncbi.nlm.nih.gov/pubmed/26096783
  4. MicroRNA-26a/b directly regulate La-related protein 1 and inhibit cancer cell invasion in prostate cancer.
    Kato M, Goto Y, Matsushita R, Kurozumi A, Fukumoto I, Nishikawa R, Sakamoto S, Enokida H, Nakagawa M, Ichikawa T, Seki N.
    Int J Oncol. 2015;47(2):710-8. http://www.ncbi.nlm.nih.gov/pubmed/26063484
  5. MicroRNA-205 inhibits cancer cell migration and invasion via modulation of centromere protein F regulating pathways in prostate cancer.
    Nishikawa R, Goto Y, Kurozumi A, Matsushita R, Enokida H, Kojima S, Naya Y, Nakagawa M, Ichikawa T, Seki N.
    Int J Urol. 2015;22(9):867-77. http://www.ncbi.nlm.nih.gov/pubmed/26059417
  6. Tumour-suppressive microRNA-144-5p directly targets CCNE1/2 as potential prognostic markers in bladder cancer.
    Matsushita R, Seki N, Chiyomaru T, Inoguchi S, Ishihara T, Goto Y, Nishikawa R, Mataki H, Tatarano S, Itesako T, Nakagawa M, Enokida H.
    Br J Cancer. 2015;113(2):282-9. http://www.ncbi.nlm.nih.gov/pubmed/26057453
  7. The tumor-suppressive microRNA-1/133a cluster targets PDE7A and inhibits cancer cell migration and invasion in endometrial cancer.
    Yamamoto N, Nishikawa R, Chiyomaru T, Goto Y, Fukumoto I, Usui H, Mitsuhashi A, Enokida H, Nakagawa M, Shozu M, Seki N.
    Int J Oncol. 2015;47(1):325-34. http://www.ncbi.nlm.nih.gov/pubmed/25955017
  8. MicroRNA expression signature of oral squamous cell carcinoma: functional role of microRNA-26a/b in the modulation of novel cancer pathways.
    Fukumoto I, Hanazawa T, Kinoshita T, Kikkawa N, Koshizuka K, Goto Y, Nishikawa R, Chiyomaru T, Enokida H, Nakagawa M, Okamoto Y, Seki N.
    Br J Cancer. 2015;112(5):891-900. http://www.ncbi.nlm.nih.gov/pubmed/25668004
  9. Tumor-suppressive microRNA-206 as a dual inhibitor of MET and EGFR oncogenic signaling in lung squamous cell carcinoma.
    Mataki H, Seki N, Chiyomaru T, Enokida H, Goto Y, Kumamoto T, Machida K, Mizuno K, Nakagawa M, Inoue H.
    Int J Oncol. 2015;46(3):1039-50. http://www.ncbi.nlm.nih.gov/pubmed/25522678
  10. Downregulation of the microRNA-1/133a cluster enhances cancer cell migration and invasion in lung-squamous cell carcinoma via regulation of Coronin1C.
    Mataki H, Enokida H, Chiyomaru T, Mizuno K, Matsushita R, Goto Y, Nishikawa R, Higashimoto I, Samukawa T, Nakagawa M, Inoue H, Seki N.
    J Hum Genet. 2015;60(2):53-61. http://www.ncbi.nlm.nih.gov/pubmed/25518741
  11. Dual regulation of receptor tyrosine kinase genes EGFR and c-Met by the tumor-suppressive microRNA-23b/27b cluster in bladder cancer.
    Chiyomaru T, Seki N, Inoguchi S, Ishihara T, Mataki H, Matsushita R, Goto Y, Nishikawa R, Tatarano S, Itesako T, Nakagawa M, Enokida H.
    Int J Oncol. 2015;46(2):487-96. http://www.ncbi.nlm.nih.gov/pubmed/25405368

2014

  1. The tumor-suppressive microRNA-143/145 cluster inhibits cell migration and invasion by targeting GOLM1 in prostate cancer.
    Kojima S, Enokida H, Yoshino H, Itesako T, Chiyomaru T, Kinoshita T, Fuse M, Nishikawa R, Goto Y, Naya Y, Nakagawa M, Seki N.
    J Hum Genet. 59:78-87, 2014. http://www.ncbi.nlm.nih.gov/pubmed/24284362
  2. Tumor-suppressive microRNA-218 inhibits cancer cell migration and invasion via targeting of LASP1 in prostate cancer.
    Nishikawa R, Goto Y, Sakamoto S, Chiyomaru T, Enokida H, Kojima S, Kinoshita T, Yamamoto N, Nakagawa M, Naya Y, Ichikawa T, Seki N.
    Cancer Sci. 105:802-811, 2014. http://www.ncbi.nlm.nih.gov/pubmed/24815849
  3. Tumor-suppressive microRNA-29s inhibit cancer cell migration and invasion via targeting LAMC1 in prostate cancer.
    Nishikawa R, Goto Y, Kojima S, Enokida H, Chiyomaru T, Kinoshita T, Sakamoto S, Fuse M, Nakagawa M, Naya Y, Ichikawa T, Seki N.
    Int J Oncol. 45:401-410, 2014. http://www.ncbi.nlm.nih.gov/pubmed/24820027
  4. Tumour-suppressive microRNA-224 inhibits cancer cell migration and invasion via targeting oncogenic TPD52 in prostate cancer.
    Goto Y, Nishikawa R, Kojima S, Chiyomaru T, Enokida H, Inoguchi S, Kinoshita T, Fuse M, Sakamoto S, Nakagawa M, Naya Y, Ichikawa T, Seki N.
    FEBS Lett. 588:1973-1982, 2014. http://www.ncbi.nlm.nih.gov/pubmed/24768995
  5. Identification of tumour suppressive microRNA-451a in hypopharyngeal squamous cell carcinoma based on microRNA expression signature.
    Fukumoto I, Kinoshita T, Hanazawa T, Kikkawa N, Chiyomaru T, Enokida H, Yamamoto N, Goto Y, Nishikawa R, Nakagawa M, Okamoto Y, Seki N.
    Br J Cancer. 111:386-394, 2014. http://www.ncbi.nlm.nih.gov/pubmed/24918822
  6. Tumour-suppressive microRNA-24-1 inhibits cancer cell proliferation through targeting FOXM1 in bladder cancer.
    Inoguchi S, Seki N, Chiyomaru T, Ishihara T, Matsushita R, Mataki H, Itesako T, Tatarano S, Yoshino H, Goto Y, Nishikawa R, Nakagawa M, Enokida H.
    FEBS Lett. 588:3170-3179, 2014. http://www.ncbi.nlm.nih.gov/pubmed/24999187
  7. Expression of the Tumor Suppressive miRNA-23b/27b Cluster Is a Good Prognostic Marker in Clear Cell Renal Cell Carcinoma.
    Ishihara T, Seki N, Inoguchi S, Yoshino H, Tatarano S, Yamada Y, Itesako T, Goto Y, Nishikawa R, Nakagawa M, Enokida H.
    J Urol. 192:1822-1830, 2014. http://www.ncbi.nlm.nih.gov/pubmed/25014580
  8. The microRNA-23b/27b/24-1 cluster is a disease progression marker and tumor suppressor in prostate cancer.
    Goto Y, Kojima S, Nishikawa R, Enokida H, Chiyomaru T, Kinoshita T, Nakagawa M, Naya Y, Ichikawa T, Seki N.
    Oncotarget. 5:7748-7759, 2014. http://www.ncbi.nlm.nih.gov/pubmed/25115396
  9. microRNA-504 inhibits cancer cell proliferation via targeting CDK6 in hypopharyngeal squamous cell carcinoma.
    Kikkawa N, Kinoshita T, Nohata N, Hanazawa T, Yamamoto N, Fukumoto I, Chiyomaru T, Enokida H, Nakagawa M, Okamoto Y, Seki N.
    Int J Oncol. 44:2085-92, 2014. http://www.ncbi.nlm.nih.gov/pubmed/24647829
  10. The microRNA expression signature of bladder cancer by deep sequencing: the functional significance of the miR-195/497 cluster.
    Itesako T, Seki N, Yoshino H, Chiyomaru T, Yamasaki T, Hidaka H, Yonezawa T, Nohata N, Kinoshita T, Nakagawa M, Enokida H.
    PLoS One. 2014 Feb 10;9(2):e84311. http://www.ncbi.nlm.nih.gov/pubmed/24520312
  11. Tumor-suppressive microRNA-206 as a dual inhibitor of MET and EGFR oncogenic signaling in lung squamous cell carcinoma.
    Mataki H, Seki N, Chiyomaru T, Enokida H, Goto Y, Kumamoto T, Machida K, Mizuno K, Nakagawa M, Inoue H.
    Int J Oncol. 2014 Dec 18. doi: 10.3892/ijo.2014.2802. [Epub ahead of print] http://www.ncbi.nlm.nih.gov/pubmed/25522678
  12. Downregulation of the microRNA-1/133a cluster enhances cancer cell migration and invasion in lung-squamous cell carcinoma via regulation of Coronin1C.
    Mataki H, Enokida H, Chiyomaru T, Mizuno K, Matsushita R, Goto Y, Nishikawa R, Higashimoto I, Samukawa T, Nakagawa M, Inoue H, Seki N.
    J Hum Genet. 2014 Dec 18. doi: 10.1038/jhg.2014.111. [Epub ahead of print] http://www.ncbi.nlm.nih.gov/pubmed/25518741
  13. The association of CXCR3 and renal cell carcinoma metastasis.
    Utsumi T, Suyama T, Imamura Y, Fuse M, Sakamoto S, Nihei N, Ueda T, Suzuki H, Seki N, Ichikawa T.
    J Urol. 192:567-574, 2014. http://www.ncbi.nlm.nih.gov/pubmed/24518777
  14. The secretogranin II gene is a signal integrator of glutamate and dopamine inputs.
    Iwase K, Ishihara A, Yoshimura S, Andoh Y, Kato M, Seki N, Matsumoto E, Hiwasa T, Muller D, Fukunaga K, Takiguchi M.
    J Neurochem. 128:233-245, 2014. http://www.ncbi.nlm.nih.gov/pubmed/24111984
  15. Expression of ABCB6 isrelated to resistance to 5-FU, SN-38 and vincristine.
    Minami K, Kamijo Y, Nishizawa Y, Tabata S, Horikuchi F, Yamamoto M, Kawahara K, Shinsato Y, Tachiwada T, Chen ZS, Tsujikawa K, Nakagawa M, Seki N, Akiyama S, Arima K, Takeda Y, Furukawa T.
    Anticancer Res. 34:4767-4773, 2014. http://www.ncbi.nlm.nih.gov/pubmed/25202056

2013

  1. The tumor suppressive microRNA-143/145 cluster inhibits cell migration and invasion by targeting GOLM1 in prostate cancer.
    Kojima S, Enokida H, Yoshino H, Itesako T, Chiyomaru T, Kinoshita T, Fuse M, Nishikawa R, Goto Y, Naya Y, Nakagawa M, Seki N.
    2013 Nov 28. doi: 10.1038/jhg.2013.121. [Epub ahead of print](IF2012: 2.365) http://www.ncbi.nlm.nih.gov/pubmed/24284362
  2. Tumor-suppressive microRNA-29a inhibits cancer cell migration and invasion via targeting HSP47 in cervical squamous cell carcinoma.
    Yamamoto N, Kinoshita T, Nohata N, Yoshino H, Itesako T, Fujimura L, Mitsuhashi A, Usui H, Enokida H, Nakagawa M, Shozu M, Seki N.
    Int J Oncol. 2013;43:1855-1863. doi: 10.3892/ijo.2013.2145.(IF2012: 2.657) http://www.ncbi.nlm.nih.gov/pubmed/24141696
  3. Tumor-suppressive microRNA-29a inhibits cancer cell migration and invasion by targeting laminin-integrin signaling in head neck squamous cell carcinoma.
    Kinoshita T, Nohata N, Hanazawa T, Kikkawa N, Yamamoto N, Yoshino H, Itesako T, Enokida H, Nakagawa M, Okamoto Y, Seki N.
    Br J Cancer. 2013 Nov 12;109(10):2636-45. doi: 10.1038/bjc.2013.607.(IF2012: 5.082) http://www.ncbi.nlm.nih.govpubmed/24091622
  4. The tumor-suppressive microRNA-143/145 cluster targets hexokinase-2 in renal cell carcinoma.
    Yoshino H, Enokida H, Itesako T, Kojima S, Kinoshita T, Tatarano S, Chiyomaru T, Nakagawa M, Seki N.
    Cancer Sci. 2013 Sep 6. doi: 10.1111/cas.12280. [Epub ahead of print](IF2012: 3.479)
  5. Genistein inhibits prostate cancer cell growth by targeting miR-34a and oncogenetic HOTAIR.
    Chiyomaru T, Yamamura S, Fukuhara S, Yoshino H, Kinoshita T, Majid S, Saini S, Chang I, Tanaka Y, Enokida H, Seki N, Nakagawa M, Dahiya R.
    PLoS One. 2013 Aug 1;8(8):e70372. doi: 10.1371/journal.pone.0070372. Print 2013.(IF2012: 3.730) http://www.ncbi.nlm.nih.gov/pubmed/23936419
  6. Tumor-suppressive microRNA-1291 directly regulates glucose transpoter 1 in renal cell carcinoma.
    Yamasaki T, Seki N, Yoshino H, Itesako T, Yamada Y, Tatarano S, Hidaka H, Yonezawa T, Nakagawa M, Enokida H.
    Cancer Sci. 2013 Jul 25. doi: 10.1111/cas.12240. [Epub ahead of print](IF2012: 3.479) http://www.ncbi.nlm.nih.gov/pubmed/23889809
  7. Aberrant expression of microRNAs in bladder cancer
    Yoshino H, Seki N, Itesako T, Chiyomaru T, Nakagawa M, Enokida H.
    Nat Rev Urol. 2013 Jul;10(7):396-404. doi: 10.1038/nrurol.2013.113. Epub 2013 May 28. (IF2012: 4.793) http://www.ncbi.nlm.nih.gov/pubmed/23712207
  8. Epithelial-mesenchymal transition-related microRNA-200s regulate molecular targets and pathways in renal cell carcinoma.
    Yoshino H, Enokida H, Itesako T, Tatarano S, Kinoshita T, Fuse M, Kojima S, Nakagawa M, Seki N.
    J Hum Genet. 2013 Aug;58(8):508-16. doi: 10.1038/jhg.2013.31. Epub 2013 May 2.(IF2012: 2.365) http://www.ncbi.nlm.nih.gov/pubmed/23635949
  9. Tumour suppressive microRNA-874 contributes to cell proliferation through targeting of histone deacetylase 1 in head and neck squamous cell carcinoma.
    Nohata N, Kinoshita T, Hanazawa T, Inamine A, Kikkawa N, Itesako T, Yoshino H, Enokida H, Nakagawa M, Okamoto Y, Seki N.
    Br J Cancer. 2013 Apr 30;108(8):1648-58.(IF2012: 5.082) http://www.ncbi.nlm.nih.gov/pubmed/23558898
  10. Tumor suppressive microRNA-218 inhibits cancer cell migration and invasion by targeting focal adhesion pathways in cervical squamous cell carcinoma.
    Yamamoto N, Kinoshita T, Nohata N, Itesako T, Yoshino H, Enokida H, Nakagawa M, Shozu M, Seki N.
    Int J Oncol. 2013 May;42(5):1523-32. (IF2012: 2.657) http://www.ncbi.nlm.nih.gov/pubmed/23483249
  11. Genistein up-regulates tumor suppressor microRNA-574-3p in prostate cancer.
    Chiyomaru T, Yamamura S, Fukuhara S, Hidaka H, Majid S, Saimi S, Arora S, Deng G, Shahryari V, Chang I, Tanama Y, Laura Tabatabai Z, Enokida H, Seki N, Nakagawa M, Dahiya R.
    PLoS ONE. 2013;8(3):e58929. doi: 10.1371/journal.pone.0058929. Epub 2013 Mar 12.(IF2012: 3.730) http://www.ncbi.nlm.nih.gov/pubmed/23554959
  12. MicroRNAs function as tumor suppressors or oncogenes: Aberrant expression of microRNAs in head and neck squamous cell carcinoma (Review)
    Nijiro Nohata, Toyoyuki Hanazawa, Takashi Kinoshita, Yoshitaka Okamoto, Naohiko Seki
    Auris Nasus Larynx. 2013 Apr;40(2):143-9. doi: 10.1016/j.anl.2012.07.001. (IF2012: 0.948 ) http://www.ncbi.nlm.nih.gov/pubmed/22831895
  13. Tumor-suppressive microRNA-135a inhibits cancer cell proliferation by targeting the c-MYC oncogene in renal cell carcinoma.
    Yamada Y, Hidaka H, Seki N, Yoshino H, Yamasaki T, Itesako T, Nakagawa M, Enokida H.
    Cancer Sci. 2013 Mar;104(3):304-12. (IF2012: 3.479) http://www.ncbi.nlm.nih.gov/pubmed/23176581
  14. microRNA-218 inhibits cell migration and invasion in renal cell carcinoma through targeting caveolin-2 involved in focal adhesion pathway.
    Yamasaki T, Seki N, Yoshino H, Itesako T, Hidaka H, Yamada Y, Tatarano S, Yonezawa T, Kinoshita T, Nakagawa M, Enokida H.
    J Urol. 2013 Feb 27. doi:pii: S0022-5347(13)00365-0. 10.1016/j.juro.2013.02.089. [Epub ahead of print] (IF2012: 3.696) http://www.ncbi.nlm.nih.gov/pubmed/23454155
  15. Mir-133a induces apoptosis through direct regulation of GSTP1 in bladder cancer cell lines.
    Uchida Y, Chiyomaru T, Enokida H, Kawakami K, Tatarano S, Kawahara K, Nishiyama K, Seki N, Nakagawa M.
    Urol Oncol. 2013;31:115-123.(IF2012: 3.647) http://www.ncbi.nlm.nih.gov/pubmed/21396852
  16. Cytoskeleton-associated protein 2 is a potential predictive marker for risk of early and extensive recurrence of hepatocellular carcinoma after operative resection.
    Hayashi T, Ohtsuka M, Okamura D, Seki N, Kimura F, Shimizu H, Yoshidome H, Kato A, Yoshitomi H, Furukawa K, Miyazaki M.
    Surgery. 2013 Nov 12. doi:pii: S0039-6060(13)00331-0. 10.1016/j.surg.2013.06.009. [Epub ahead of print](IF2012: 3.373) http://www.ncbi.nlm.nih.gov/pubmed/24238125
  17. Efficient subtractive cloning of tgenes activated by lipopolysaccharide and interferon r in primary-cultures cortical cells or newbone mice.
    Miyauchi O, Iwase K, Itoh K, Kato M, Seki N, Braissant O, Bachmann C, Shozu M, Sekiya S, Osada H, Takiguchi M.
    PLoS One. 2013 Nov 11;8(11):e79236.(IF2012: 3.730) http://www.ncbi.nlm.nih.gov/pubmed/24244457

2012

  1. Tumor suppressive microRNA-218 inhibits cancer cell migration and invasion through targeting laminin-332 in head and neck squamous cell carcinoma.
    Kinoshita T, Hanazawa T, Nohata N, Kikkawa N, Enokida H, Yoshino H, Yamasaki T, Hidaka H, Nakagawa M, Okamoto Y, Seki N.
    Oncotarget. 2012 Nov;3(11):1386-400. (IF2011: 4.784) http://www.ncbi.nlm.nih.gov/pubmed/23159910
  2. Tumor suppressive microRNAs (miR-222 and miR-31) regulate molecular pathways based on microRNA expression signature in prostate cancer
    Miki Fuse, Satoko Kojima, Hideki Enokida, Takeshi Chiyomaru, Hirofumi Yoshino, Nijiro Nohata, Takashi Kinoshita, Shinichi Sakamoto, Yukio Naya, Masayuki Nakagawa, Tomohiko Ichikawa and Naohiko Seki
    J Hum Genet. 2012 Nov 26;57(11):691-9. (IF2011: 2.570) http://www.ncbi.nlm.nih.gov/pubmed/22854542
  3. Identification of novel molecular targets regulated by tumor suppressive miR-375 induced by histone acetylation in esophageal squamous cell carcinoma.
    Isozaki Y, Hoshino I, Nohata N, Kinoshita T, Akutsu Y, Hanari N, Mori M, Yoneyama Y, Akanuma N, Takeshita N, Maruyama T, Seki N, Nishino N, Yoshida M, Matsubara H.
    Int J Oncol. 2012 Sep;41(3):985-94. (IF2011: 2.399) http://www.ncbi.nlm.nih.gov/pubmed/22752059
  4. The functional significance of microRNA-375 in human squamous cell carcinoma: aberrant expression and effects on cancer pathways (Review)
    Takashi Kinoshita, Toyoyuki Hanazawa, Nijiro Nohata, Yoshitaka Okamoto and Naohiko Seki
    J Hum Genet. 2012; 57: 556-563(IF2011: 2.570) http://www.ncbi.nlm.nih.gov/pubmed/22718022
  5. Tumor suppressive microRNA‑138 contributes to cell migration and invasion through its targeting of vimentin in renal cell carcinoma
    Takeshi Yamasaki, Naohiko Seki, Yasutoshi Yamada, Hirofumi Yoshino, Hideo Hidaka, Takeshi Chiyomaru, Nijiro Nohata, Takashi Kinoshita, Masayuki Nakagawa and Hideki Enokida
    Int J Oncol. 2012 Sep;41(3):805-17. (IF2011: 2.399) http://www.ncbi.nlm.nih.gov/pubmed/22766839
  6. Novel molecular targets regulated by tumor suppressors microRNA-1 and microRNA-133a in bladder cancer.
    Yamasaki T, Yoshino H, Enokida H, Hidaka H, Chiyomaru T, Nohata N, Kinoshita T, Fuse M, Seki N, Nakagawa M.
    Int J Oncol. 2012 Jun;40(6):1821-30. (IF2011: 2.399) http://www.ncbi.nlm.nih.gov/pubmed/22378464
  7. Actin-related protein 2/3 complex subunit 5 (ARPC5) contributes to cell migration and invasion and is directly regulated by tumor-suppressive microRNA-133a in head and neck squamous cell carcinoma.
    Kinoshita T, Nohata N, Watanabe-Takano H, Yoshino H, Hidaka H, Fujimura L, Fuse M, Yamasaki T, Enokida H, Nakagawa M, Hanazawa T, Okamoto Y, Seki N.
    Int J Oncol. 2012 Jun;40(6):1770-8. (IF2011: 2.399) http://www.ncbi.nlm.nih.gov/pubmed/22378351
  8. microRNA-1/133a and microRNA-206/133b clusters: Dysregulation and functional roles in human cancers. (Review)
    Nohata N, Hanazawa T, Enokida H, Seki N.
    Oncotarget. 2012 Feb 4 ; 3(1): 9-21 (IF2011: 4.784) http://www.ncbi.nlm.nih.gov/pubmed/22308266
  9. Tumor suppressive microRNA-1285 regulates novel molecular targets: Aberrant expression and functional significance in renal cell carcinoma.
    Hidaka H, Seki N, Yoshino H, Yamasaki T, Yamada Y, Nohata N, Fuse M, Nakagawa M, Enokida H.
    Oncotarget. 2012 Jan 30; 3(1): 44-57 (IF2011: 4.784) http://www.ncbi.nlm.nih.gov/pubmed/22294552
  10. Tumor suppressive microRNA-133a regulates novel targets: Moesin contributes to cancer cell proliferation and invasion in head and neck squamous cell carcinoma.
    Kinoshita T, Nohata N, Fuse M, Hanazawa T, Kikkawa N, Fujimura L, Takano H, Yamada Y, Yoshino H, Enokida H, Nakagawa M, Okamoto Y, Seki N.
    Biochem Biophys Res Commun. 2012 2012 Feb 10;418(2):378-83. (IF2011: 2.484) http://www.ncbi.nlm.nih.gov/pubmed/22266319
  11. Novel oncogenic function of mesoderm development candidate 1 (MESDC1) and its regulation by MiR-574-3p in baldder cancer cell lines.
    Tatarano S, Chiyomaru T, Kawakami K, Enokida H, Yoshino H, Hidaka H, Nohata N, Yamasaki T, Gotanda T, Tachiwada T, Seki N, Nakagawa M.
    Int J Oncol. 2012 Apr;40(4):951-9. (IF2011: 2.399) http://www.ncbi.nlm.nih.gov/pubmed/22179486
  12. Tumor suppressive microRNA-1 mediated novel apoptosis pathways through direct inhibition of splicing factor arginine/serine-rich 9 (SRSF9/SRp30c) in bladder cancer.
    Yoshino H, Enokida H, Kawakami K, Chiyomaru T, Tatarano S, Hidaka H, Yamasaki T, Gotanda T, Tachiwada T, Nohata N, Nishiyama K, Seki N, Nakagawa M.
    Biochem Biophys Res Commun. 2012 Jan 6;417(1):588-93. (IF2011: 2.484) http://www.ncbi.nlm.nih.gov/pubmed/22178073
  13. Tumor suppressive microRNA-133a regulates novel molecular networks in lung squamous cell carcinoma.
    Moriya Y, Nohata N, Kinoshita T, Mutallip M, Okamoto T, Yoshida S, Suzuki M, Yoshino I, Seki N.
    J Hum Genet. 2012 Jan;57(1):38-45. (IF2011: 2.570) http://www.ncbi.nlm.nih.gov/pubmed/22089643
  14. Tumour suppressors miR-1 and miR-133a target the oncogenic function of purine nucleoside phosphorylase (PNP) in prostate cancer.
    Kojima S, Chiyomaru T, Kawakami K, Yoshino H, Enokida H, Nohata N, Fuse M, Ichikawa T, Naya Y, Nakagawa M, Seki N.
    Br J Cancer. 2012 Jan 17;106(2):405-13. (IF2011: 5.042) http://www.ncbi.nlm.nih.gov/pubmed/22068816
  15. Tumor suppressive microRNA-375 regulates lactate dehydrogenase B in maxillary sinus squamous cell carcinoma.
    Kinoshita T, Nohata N, Yoshino H, Hanazawa T, Kikkawa N, Fujimura L, Chiyomaru T, Kawakami K, Enokida H, Nakagawa M, Okamoto Y, Seki N.
    Int J Oncol. 2012 Jan;40(1):185-93. (IF2011: 2.399) http://www.ncbi.nlm.nih.gov/pubmed/21922130

2011

  1. Tumour suppressive microRNA-874 regulates novel cancer networks in maxillary sinus squamous cell carcinoma.
    Nohata N, Hanazawa T, Kikkawa N, Sakurai D, Fujimura L, Chiyomaru T, Kawakami K, Yoshino H, Enokida H, Nakagawa M, Katayama A, Harabuchi Y, Okamoto Y, Seki N.
    Br J Cancer.( 2011) 105:833-41. http://www.ncbi.nlm.nih.gov/pubmed/21847129
  2. Tumor suppressive microRNA-375 regulates oncogene AEG-1/MTDH in head and neck squamous cell carcinoma (HNSCC).
    Nohata N, Hanazawa T, Kikkawa N, Mutallip M, Sakurai D, Fujimura L, Kawakami K, Chiyomaru T, Yoshino H, Enokida H, Nakagawa M, Okamoto Y, Seki N.
    J Hum Genet. (2011) 56:595-601. http://www.ncbi.nlm.nih.gov/pubmed/21753766
  3. The functional significance of miR-1 and miR-133a in renal cell carcinoma.
    Kawakami K, Enokida H, Chiyomaru T, Tatarano S, Yoshino H, Kagara I, Gotanda T, Tachiwada T, Nishiyama K, Nohata N, Seki N, Nakagawa M.
    Eur J Cancer. (2011) [Epub ahead of print] http://www.ncbi.nlm.nih.gov/pubmed/21745735
  4. A commentary on microRNA-141 confers resistance to cisplatin-induced apoptosis by targeting YAP1 in human esophageal squamous cell carcinoma.
    Seki N.
    J Hum Genet. (2011) 56:339-340. http://www.ncbi.nlm.nih.gov/pubmed/21390040
  5. Optimization of a microRNA expression vector for function analysis of microRNA.
    Furukawa N, Sakurai F, Katayama K, Seki N, Kawabara K, Mizuguchi H.
    J Control Release. (2011) 28:94-101. http://www.ncbi.nlm.nih.gov/pubmed/21146569
  6. Laser-captured microdissection-microarray analysis of the genes involved endometrial carcinogenesis: stepwise up-regulation of lipocalin2 expression in normal and neoplastic endometria and its functional relevance.
    Miyamoto T, Kashima H, Suzuki A, Kikuchi N, Konoshi I, Seki N, Shinozawa T.
    Human Pathol. (2011) 42:1265-1274. http://www.ncbi.nlm.nih.gov/pubmed/21334721
  7. Identification of novel molecular targets regulated by tumor suppressive miR-1/miR-133a in maxillary sinus squamous cell carcinoma.
    Nohata N, Hanazawa T, Kikkawa N, Sakurai D, Sasaki K, Chiyomaru T, Kawakami K, Yoshino H, Enokida H, Nakagawa M, Okamoto Y, Seki N.
    Int J Oncol. (2011) 39:1099-107. http://www.ncbi.nlm.nih.gov/pubmed/21701775
  8. miR-218 on the genomic loss region of chromosome 4p15.31 functions as a tumor suppressor in bladder cancer.
    Tatarano S, Chiyomaru T, Kawakami K, Enokida H, Yoshino H, Hidaka H, Yamasaki T, Kawahara K, Nishiyama K, Seki N, Nakagawa M.
    Int J Oncol. (2011) 39:13-21. http://www.ncbi.nlm.nih.gov/pubmed/21519788
  9. Restoration of miR-517a expression induces cell apoptosis in bladder cancer cell lines.
    Yoshitomi T, Kawakami K, Enokida H, Chiyomaru T, Kagara I, Tatarano S, Yoshino H, Arimura H, Nishiyama K, Seki N, Nakagawa M.
    Oncol Rep. (2011) 25:1661-8. http://www.ncbi.nlm.nih.gov/pubmed/21479368
  10. MiR-133a induces apoptosis through direct regulation of GSTP1 in bladder cancer cell lines.
    Uchida Y, Chiyomaru T, Enokida H, Kawakami K, Tatarano S, Kawahara K, Nishiyama K, Seki N, Nakagawa M.
    Urol Oncol. (2011) [Epub ahead of print] http://www.ncbi.nlm.nih.gov/pubmed/21396852
  11. miR-1 as a tumor suppressive microRNA targeting TAGLN2 in head and neck squamous cell carcinoma.
    Nohata N, Sone Y, Hanazawa T, Fuse M, Kikkawa N, Yoshino H, Chiyomaru T, Kawakami K, Enokida H, Nakagawa M, Shozu M, Okamoto Y, Seki N.
    Oncotarget.( 2011) 2:29-42. http://www.ncbi.nlm.nih.gov/pubmed/21378409
  12. SWAP70, actin-binding protein, function as an oncogene targeting tumor-suppressive miR-145 in prostate cancer.
    Chiyomaru T, Tatarano S, Kawakami K, Enokida H, Yoshino H, Nohata N, Fuse M, Seki N, Nakagawa M.
    Prostate. (2011) 71:1559-1567 http://www.ncbi.nlm.nih.gov/pubmed/21360565
  13. The tumour-suppressive function of miR-1 and miR-133a targeting TAGLN2 in bladder cancer.
    Yoshino H, Chiyomaru T, Enokida H, Kawakami K, Tatarano S, Nishiyama K, Nohata N, Seki N, Nakagawa M.
    Br J Cancer. (2011) 104:808-18. http://www.ncbi.nlm.nih.gov/pubmed/21304530
  14. Restoration of miR-145 expression suppresses cell proliferation, migration and invasion in prostate cancer by targeting FSCN1.
    Fuse M, Nohata N, Kojima S, Sakamoto S, Chiyomaru T, Kawakami K, Enokida H, Nakagawa M, Naya Y, Ichikawa T, Seki N.
    Int J Oncol.( 2011) 38:1093-101. http://www.ncbi.nlm.nih.gov/pubmed/21258769
  15. Glutathione S-transferase P1 (GSTP1) suppresses cell apoptosis and its regulation by miR-133α in head and neck squamous cell carcinoma (HNSCC).
    Mutallip M, Nohata N, Hanazawa T, Kikkawa N, Horiguchi S, Fujimura L, Kawakami K, Chiyomaru T, Enokida H, Nakagawa M, Okamoto Y, Seki N.
    Int J Mol Med. (2011) 27:345-52. http://www.ncbi.nlm.nih.gov/pubmed/21181092
  16. MiR-96 and miR-183 detection in urine serve as potential tumor markers of urothelial carcinoma: correlation with stage and grade, and comparison with urinary cytology.
    Yamada Y, Enokida H, Kojima S, Kawakami K, Chiyomaru T, Tatarano S, Yoshino H, Kawahara K, Nishiyama K, Seki N, Nakagawa M.
    Cancer Sci. (2011) 102:522-9. http://www.ncbi.nlm.nih.gov/pubmed/21166959
  17. Caveolin-1 mediates tumor cell migration and invasion and its regulation by miR-133a in head and neck squamous cell carcinoma.
    Nohata N, Hanazawa T, Kikkawa N, Mutallip M, Fujimura L, Yoshino H, Kawakami K, Chiyomaru T, Enokida H, Nakagawa M, Okamoto Y, Seki N.
    Int J Oncol. (2011) 38:209-17. http://www.ncbi.nlm.nih.gov/pubmed/21109942
  18. LY6K is a novel molecular target in bladder cancer on basis of integrate genome-wide profiling.
    Matsuda R, Enokida H, Chiyomaru T, Kikkawa N, Sugimoto T, Kawakami K, Tatarano S, Yoshino H, Toki K, Uchida Y, Kawahara K, Nishiyama K, Seki N, Nakagawa M.
    Br J Cancer. (2011) 104:376-86. http://www.ncbi.nlm.nih.gov/pubmed/21063397

2010

  1. miR-145, miR-133a and miR-133b: Tumor-suppressive miRNAs target FSCN1 in esophageal squamous cell carcinoma.
    Kano M, Seki N, Kikkawa N, Fujimura L, Hoshino I, Akutsu Y, Chiyomaru T, Enokida H, Nakagawa M, Matsubara H.
    IntJ Cancer. (2010) 127:2804-14. http://www.ncbi.nlm.nih.gov/pubmed/21351259
  2. CpG hypermethylation of cellular retinol-binding protein 1 contributes to cell proliferation and migration in bladder cancer.
    Toki K, Enokida H, Kawakami K, Chiyomaru T, Tatarano S, Yoshino H, Uchida Y, Kawahara K, Nishiyama K, Seki N, Nakagawa M.
    Int J Oncol. (2010) 37:1379-88. http://www.ncbi.nlm.nih.gov/pubmed/21042705
  3. Functional role of LASP1 in cell viability and its regulation by microRNAs in bladder cancer.
    Chiyomaru T, Enokida H, Kawakami K, Tatarano S, Uchida Y, Kawahara K, Nishiyama K, Seki N, Nakagawa M. (2010)
    Urol Oncol. (2010). [Epub ahead of print]. http://www.ncbi.nlm.nih.gov/pubmed/20843712
  4. miR-489 is a tumour-suppressive miRNA target PTPN11 in hypopharyngeal squamous cell carcinoma (HSCC).
    Kikkawa N, Hanazawa T, Fujimura L, Nohata N, Suzuki H, Chazono H, Sakurai D,Horiguchi S, Okamoto Y, Seki N.(2010)
    Br J Cancer. (2010);103(6):877-84. http://www.ncbi.nlm.nih.gov/pubmed/20700123
  5. Elucidation of tumor suppressive function ofmiR-145, miR-133a and miR-133b and identification of their target genes in head and neck squamous cell carcinoma.
    Hanazawa T, Kikkawa N, Nohata N, Okamoto Y, Seki N (2009)
    Head and neck cancer, 36(1): 1-8, (2010) http://www.jstage.jst.go.jp/article/jjhnc/36/1/36_1/_article/-char/ja
  6. CpG hypermethylation of human four-and-a-half LIM domains 1 contributes to migration and invasion activity of human bladder cancer.
    Matsumoto M, Kawakami K, Enokida H, Toki K, Matsuda R, Chiyomaru T, Nishiyama K, Kawahara K, Seki N, Nakagawa M.(2010)
    Int J Mol Med. (2010) ;26(2):241-7. http://www.ncbi.nlm.nih.gov/pubmed/20596604
  7. miR-145 and miR-133a function as tumour suppressors and directly regulate FSCN1 expression in bladder cancer.
    Chiyomaru T, Enokida H, Tatarano S, Kawahara K, Uchida Y, Nishiyama K, Fujimura L, Kikkawa N, Seki N, Nakagawa M.(2010)
    Br J Cancer. (2010) 2;102(5):883-91. http://www.ncbi.nlm.nih.gov/pubmed/20160723

2009

  1. CpG hypermethylation of collagen type I alpha 2 contributes to proliferation and migration activity of human bladder cancer.
    Mori K, Enokida H, Kagara I, Kawakami K, Chiyomaru T, Tatarano S, Kawahara K, Nishiyama K, Seki N, Nakagawa M. (2009)
    Int J Oncol. 34(6):1593-602. http://www.ncbi.nlm.nih.gov/pubmed/19424577
  2. Identification of novel microRNA targets based on microRNA signatures in bladder cancer.
    Ichimi T, Enokida H, Chiyomayu T, Kawakami K, Nakagawa M, Seki N (2009)
    Int J Cancer 125:345-352. http://www.ncbi.nlm.nih.gov/pubmed/19378336
  3. The galanin signaling cascade is a candidate pathway regulating oncogenesis in human squamous cell carcinoma.
    Sugimoto T, Seki N, Shimizu S, Kikkawa N, Tsukada J, Shimada H, Sasaki K, Hanazawa T, Okamoto Y (2009)
    Gene Chromosome Cancer 48,132-142 http://www.ncbi.nlm.nih.gov/pubmed/18973137
  4. Reg IV expression and clinicopathologic features of gallbladder carcinoma.
    Tamura H, Ohtsuka M, Washiro M, Kimura F, Shimizu H, Yoshidome H, Kato A, Seki N, Miyazaki M.(2009)
    Hum Pathol. 40(12):1686-92. http://www.ncbi.nlm.nih.gov/pubmed/19716164
  5. Prediction of lymph node metastasis by gene expression profiling in patients with primary resected lung cancer.
    Moriya Y, Iyoda A, Kasai Y, Sugimoto T, Hashida J, Nimura Y, Kato M, Takiguchi M, Seki N, Yoshino I (2009)
    Lung Cancer 64(1):86-91. http://www.ncbi.nlm.nih.gov/pubmed/18930562

2008

  1. Identification of a novel therapeutic target for head and neck squamous cell carcinomas: A role for the neurotensin-neurotensin receptor 1 oncogenic signaling pathway.
    Simizu S, Tsukada J, Sugimoto T, Kikkawa N, Sasaki K, Chazono H, Hanazawa T, Okamoto Y, Seki N (2008)
    Int J Cancer 123, 1816-1823 http://www.ncbi.nlm.nih.gov/pubmed/18661521
  2. Analysis of the methylation status of genes up-regulated by the demethylating agent, 5-aza-2'-deoxycytidine, in esophageal squamous cell carcinoma.
    Arai M, Imazeki F, Sakai Y, Mikata R, Tada M, Seki N, Shimada H, Ochiai T, Okamoto Y (2008)
    Oncology Rep 20,405-412 http://www.ncbi.nlm.nih.gov/pubmed/18636205
  3. Expression of the WT1 gene -KTS domain isoforms suppresses the invasive ability of human lung squamous cell carcinoma cells.
    Moriya S, Takiguchi M, Seki N (2008)
    Int J Oncology 32,349-356 http://www.ncbi.nlm.nih.gov/pubmed/18202757
  4. Upregulation of topoisomerase IIalpha expression in advanced gallbladder carcinoma: a potential chemotherapeutic target.
    Washiro M, Otsuka M, Kimura F, Shimizu H, Yoshidome H, Sugimoto T,Seki N, Miyazaki M (2008)
    J Cancer Res Clin Oncol 134,793-801 http://www.ncbi.nlm.nih.gov/pubmed/18204862
  5. CpG hypermethylation of the UCHL1 gene promoter is associated with pathogenesis and poor prognosis in renal cell carcinoma.
    Kagara I, Enokida H, Kawakami K, Matsuda R, Toki K, Nishimura H, Chiyomaru T, Tatarano S, Itesako T, Kawamoto K, Nishiyama K, Seki N, Nakagawa M (2008)
    J Urology 180,343-351 http://www.ncbi.nlm.nih.gov/pubmed/18499164
  6. Identification of genes associated with multiple nodules in hepatocellular carcinoma using cDNA microarray: multicentric occurrence or intrahepatic metastasis?
    Nakata T, Seki N, Miwa S, Kobayashi A, Soeda J, Nimura Y, Kawasaki S, Miyagawa S (2008)
    Hepatogastroenterology 55,865-872 http://www.ncbi.nlm.nih.gov/pubmed/18705285
  7. Genetic changes in pT2 and pT3 prostate cancer detected by comparative genomic hybridization.
    Fukasawa S, Kino M, Kobayashi M, Suzuki H, Komiya A, Imamoto T, Hirokawa Y, Shiraishi T, Takiguchi M, Ishida H, Shindo T, Seki N, Ichikawa T. (2008)
    Prostate Cancer Prostatic Dis. 11(3):303-10. http://www.ncbi.nlm.nih.gov/pubmed/17923855

2007

  1. Lin-7C/VELI3/MALS-3: an Essential Component in Metastasis of Human Squamous Cell Carcinoma.
    Onda T, Uzawa K, Nakashima D, Saito K, Iwadate Y, Seki N, Shibahara T, Tanzawa H (2007)
    Cancer Res. 67, 9643-9648 http://www.ncbi.nlm.nih.gov/pubmed/17942893
  2. Gene Expressions Associated with Chemosensitivity in Human Hepatoma Cells.
    Hoshida Y, Moriyama M, Otsuka M, Kato N, Taniguchi H, Shiratori Y, Seki N, Omata M. (2007)
    Hepatogastroenterol. 54, 489-492. http://www.ncbi.nlm.nih.gov/pubmed/17523305
  3. Silencing Ku80 using small interfering RNA enhanced radiation sensitivity in vitro and in vivo.Nimura Y, Kawata T, Uzawa K, Okamura J, Liu C, Saito M, Shimada H, Seki N, Nakagawara A, Ito H, Ochiai T, Tanzawa H (2007)
    Int J Oncol. 30, 1477-1484. http://www.ncbi.nlm.nih.gov/pubmed/17487369
  4. Increased SKP2 and CKS1 gene expression contributes to the progression of human urothelialcarcinoma.
    Kawakami K, Enokida H, Tachiwada T, Nishiyama K, Seki N, Nakagawa M (2007)
    J Urol. 178, 301-307. http://www.ncbi.nlm.nih.gov/pubmed/17499794
  5. Comparative genomic hybridization reveals frequent losses of 1p and 3q in benign pheochromocytomas ofJapanese patients.
    Kino M, Suzuki H, Naya Y, Komiya A, Imamoto T, Ichikawa T, Tatsuno I, Ishida H, Shindo T, Seki N (2007)
    Cancer Genet Cytogenet. 175, 169-172. http://www.ncbi.nlm.nih.gov/pubmed/17556075
  6. Integrated analysis of expression and genome alteration reveals putative amplified target genes in esophagealcancer.
    Sugimoto T, Arai M, Shimada H, Hata A, Seki N (2007)
    Oncology Rep. 18, 465-472 http://www.ncbi.nlm.nih.gov/pubmed/17611672
  7. Isolation and characterization of arsenite-resistant human epidermoid carcinoma KB cells.
    Tachiwada T, Chen Zs, Che XF, Matsumoto M, Haraguchi M, Gotanda T, Sumizawa T, Furukawa T, Nishiyama K, Seki N, Yamamoto M, Nakagawa M, Akiyama S (2007)
    Oncology Rep. 18, 721-427. http://www.ncbi.nlm.nih.gov/pubmed/17671726
  8. Identification of molecular targets in head and neck squamous cell carcinomas based on genome-wide gene expression profiling.
    Shimizu S, Seki N, Sugimoto T, Horiguchi S, Tanzawa H, Hanazawa T, Okamoto Y. (2007)
    Oncol Rep. 18(6):1489-97. http://www.ncbi.nlm.nih.gov/pubmed/17982635
  9. Identification of methylation-silenced genes in colorectal cancer cell lines: genomic screening using oligonucleotide arrays.
    Fukutomi S, Seki N, Koda K, Miyazaki M. (2007)
    Scand J Gastroenterol. 2007 Dec;42(12):1486-94. http://www.ncbi.nlm.nih.gov/pubmed/17994469
  10. Altered gene expression by cisplatin in a human squamous cell lung carcinoma cell line.
    Yatomi M, Takiguchi Y, Asaka-Amano Y, Arai M, Tada Y, Kurosu K, Sakao S, Kasahara Y, Tanabe N, Tatsumi K, Seki N, Kuriyama T. (2007)
    Anticancer Res. 27(5A):3235-43. http://www.ncbi.nlm.nih.gov/pubmed/17970066

2006

  1. Serum osteopontin levels in patients with acute liver dysfunction.
    Arai M, Yokosuka O, Kanda T, Fukai K, Imazeki F, Muramatsu M, Seki N, Miyazaki M, Ochiai T, Hirasawa H, Saisho H (2006)
    Scand J Gastroenterol. 41, 102-10. http://www.ncbi.nlm.nih.gov/pubmed/16373283
  2. WISP-2 expression in human salivary gland tumor.
    Kouzu Y, Uzawa K, Kato M, Higo M, Nimura Y, Harada K, Numata T, Seki N, Sato M, Tanzawa H (2006)
    Int J Mol Med. 17, 567-573. http://www.ncbi.nlm.nih.gov/pubmed/16525711
  3. Activation of genes for growth factor and cytokine pathways late in chondrogenic differentiation of ATDC5 cells.
    Osawa A, Kato M, Matsumoto E, Iwase K, Sigimoto T, Matsui T, Ishikura H, Sugano S, Kurosawa H, Takiguchi M, Seki N (2006)
    Genomics 88, 52-64. http://www.ncbi.nlm.nih.gov/pubmed/16597497
  4. Sequential gene expression changes in cancer cell lines after treatment with the demethylation agent 5-Aza-2'-deoxycytidine.
    Arai M, Yokosuka O, Hirasawa Y, Fukai K, Chiba T, Imazeki F, Kanda T, Yatomi M, Takiguchi Y, Seki N, Saisho H, Ochiai T (2006)
    Cancer 28, 2514-2525 http://www.ncbi.nlm.nih.gov/pubmed/16649225
  5. Identification and Characterization of Novel and Unknown Mouse Epididymus-specific Genes by Complementary DNA Microarray Technology.
    Yamazaki K, Adachi T, Sato K, Yanagisawa Y, Fukata H, Seki N, Mori C, Komiyama M (2006)
    Biol Reprod. 75, 462-468 http://www.ncbi.nlm.nih.gov/pubmed/16707773
  6. Arpc1b gene is a candidate prediction marker for choroidal malignant melanomas sensitive to radiotherapy.
    Kumagai K, Nimura Y, Mizota A, Miyahara N, Aoki M, Furuyama Y, Yakiguchi M, Yamamoto S, Seki N (2006)
    Invest Ophthalmol Vis Sci. 47, 2300-2304. http://www.ncbi.nlm.nih.gov/pubmed/16723437
  7. Up-regulation of genes for oxidative phosphorylation and protein turnover in diabetic mouse retina.
    Adachi-Uehara N, Kato M, Nimura Y, Seki N, Ishihara A, Matsumoto E, Iwase K, Otsuka S, Kodama H, Mizota A, Yamamoto S, Adachi-Usami E, Takiguchi M (2006)
    Exp Eye Res. 83, 849-857 http://www.ncbi.nlm.nih.gov/pubmed/16780836
  8. Relationship between pancreatic secretory trypsin inhibitor and early recurrence of intrahepatic cholangiocarcinoma following surgical resection.
    Tonouchi A, Ohtsuka M, Ito H, Kimura F, Shimizu H, Kato M, Nimura Y, Iwase K, Hiwasa T, Seki N, Takiguchi M, Miyazaki M (2006)
    Am J Gastroenterol. 101, 1601-1610. http://www.ncbi.nlm.nih.gov/pubmed/16863567
  9. Identification of differentially expressed genes in human bladder cancer through genome-wide gene expressionprofiling.
    Kawakami K, Enokida H, Tachiwada T, Gothanda T, Tsuneyoshi K, Kubo H, Nishiyama K, Takiguchi M, Nakagawa M, Seki N (2006)
    Oncology Rep 16, 521-531. http://www.ncbi.nlm.nih.gov/pubmed/16865252
  10. Gene expression pattern in oral cancer cervical lymph node metastasis.
    Kato Y, Uzawa K, Saito K, Nakashima D, Kato M, Nimura Y, Seki N, Tanzawa H (2006)
    Oncology Rep 16, 1009-1014. http://www.ncbi.nlm.nih.gov/pubmed/17016585
  11. The present situation and prospect of microarray technology in cancer research.
    Seki N (2006)
    Moleculomics and Thereafter 23-36 http://www.ressign.com/UserArticleDetails.aspx?arid=3629

2005

    1. Elevation of galectin-9 as an inflammatory response in the periodontal ligament cells exposed to Porphylomonas gingivalis lipopolysaccharide in vitro and in vivo.
      Kasamatsu A, Uzawa K, Shimada K, Shiiba M, Otsuka Y, Seki N, Abiko Y, Tanzawa H. (2005)
      Int J Biochem Cell Biol 37, 397-408 http://www.ncbi.nlm.nih.gov/pubmed/15474984
    2. Establishment and gene analysis of a cisplatin-resistant cell line, Sa-3R, derived from oral squamous cell carcinoma.
      Nakatani K, Nakamura M, Uzawa K, Wada T, Seki N, Tanzawa H, Fujita S. (2005)
      Oncology Rep 13, 709-714 http://www.ncbi.nlm.nih.gov/pubmed/15756446
    3. Aberrant expression of RAB1A in Human Tongue Cancer.
      Shimada K, Uzawa K, Kato M, Endo Y, Shiiba M, Bukawa H, Yokoe H, Seki N, Tanzawa H. ( 2005)
      Br J Cancer. 331, 964-970 http://www.ncbi.nlm.nih.gov/pubmed/15870709
    4. Cathepsin D is a potential serum marker for poor prognosis in glioma patients.
      Fukuda M, Iwadate Y, Machida T, Hiwasa T, Nimura Y, Nagai M, Tanzawa H, Yamaura A, Seki N. (2005)
      Cancer Res. 65, 5190-5194 http://www.ncbi.nlm.nih.gov/pubmed/15958563
    5. Increased infectivity of adenovirous type 5 bearing type 11 or type 35 fibers to human esophageal and oral carcinoma cells.
      Yu L, Takenobu H, Shimozato O, Kawamura K, Nimura Y, Seki N, Ugai K, Tanzawa H, ShimadaH, Ochiai T, Tagawa M. (2005)
      Oncology Rep 14, 831-835. http://www.ncbi.nlm.nih.gov/pubmed/16142339
    6. Identification of candidate radioresistant genes in human squamous cell carcinoma cells through geneexpression analysis using DNA microarray.
      Higo M, Uzawa K, Kouzu Y, Bukawa H, Nimura Y, Seki N, Tanzawa H. (2005)
      Oncology Rep 14, 1293-1298. http://www.ncbi.nlm.nih.gov/pubmed/16211299
    7. Histone Deacetylase Inhibitor FK228 Activates Tumor Suppressor Prdx1 with Apoptosis Induction in Esophageal Cancer Cells.
      Hoshino I, Matsubara H, Hanari N, Mori M, Nishimori T, Yoneyama Y, Akutsu Y, Sakata H, Matsushita K, Seki N, Ochiai T. (2005)
      Clin Cancer Res. 11, 7945-52. http://www.ncbi.nlm.nih.gov/pubmed/16278420
PageTop