実施した基調講演・特別講演・教育講演の講演タイトルと演者名

年度	講演タイトル	演者名
2020	iPS 細胞由来の NKT 細胞を用いたがん免疫療法	古関明彦
	Polycomb in haematipoietic differentiation	古関明彦
	Daten als Basis der medizinischen	古関明彦、Prof.
	Forschung für eine personalisierte	Dr. med. N.P.
	Medizin: Das Mikrobiom und das	Malek, Ärztlicher
	Metabolom, die Treiber von entzündlichen	Direktor,
	Erkrankungen und Krebsleiden(個別化医	Medizinische
	療に向けたデータドリブンな医療研究:炎症性疾患	Universitätsklinik
	やがん性疾患のキードライバーとしてのマイクロバイオ	Tübingen
	ームと代謝)	
	iPS 細胞から誘導した NKT 細胞を用いた免疫細	古関明彦
	胞療法の開発	
	ポリコム群による抑制ドメインの複製機構の解明	古関明彦
2019	iPS 細胞由来 NKT 細胞による免疫細胞療法の開	古関明彦
	発	
	アトピー性皮膚炎の個別化医療・予測医療実現に	古関明彦
	向けた、皮膚トラ ンスクリプトーム解析研究	
	iPS 細胞が変えていく免疫細胞療法	古関明彦
	複雑な病気を単純なものとして捉えることができる	古関明彦
	か?	
	疾患生物学:マウスからヒトへどう読み替えるか?	古関明彦
	iPS-NKT 細胞によるがん治療の開発	古関明彦
	ポリコム、分化、複製	古関明彦
	iPS 細胞由来 NKT 細胞による頭頸部がんを対象と	古関明彦
	した治療の開始について	
	哺乳類ポリコム群による発生過程の制御 Variant	古関明彦
	PRC1 in cellular differentiation	

	Variant PCGF1-PRC1 is linked to	古関明彦
	proteasomal pathway to activate	
	Polycomb target genes during	
	development	
	Variant PRC1 in cellular differentiation	古関明彦
	iPS 細胞由来 NKT 細胞による頭頸部がん治療の 開始に向けて	古関明彦
	The role for enhancer of polycomb in	古関明彦
	chromatin replication and epigenetic	
	inheritance	
	Anti-tumor activity of human iPSC-	古関明彦
	derived NKT cells	
2018	Variant PRC1 in gene activation and	古関明彦
	inactivation	
	Modelling chronic dermatitis	古関明彦
	Variant PRC1 in gene activation and	古関明彦
	inactivation	
	Induced activation of Polycomb-repressed	古関明彦
	genes in mice	
	Dissecting atopic dermatitis	古関明彦
	variant PRC1.1 in transcriptional phase	古関明彦
	transition	
	Polycomb in development	古関明彦